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Typical Situation

Fry a steak

The cook controls the heat at the fireplace

and observes the process, e.g. via measuring
the temperature in the inner
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Typical Situation

The model

θ̇ = ∇ · (ν∇θ) in (0,∞)× Ω,

θ = u, at the hob,

θ(0) = 0.

The cook controls the heat at the fireplace,
which we denote by u

and observes the process, e.g. he measures the
temperature y in the center: y = f (θ).
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Simulation

The model:

θ̇ = ∇ · (ν∇θ),

θ = u, (at the hob),

θ(0) = 0.

The cook controls the heating u

and observes the process via y = f (θ).

A Finite Element discretization [Gaul’13] of the problem leads to the finite dimensional model

θ̇(t) = Aθ(t) + Bu(t), θ(0) = 0,

y(t) = Cθ(t),

a linear time invariant (LTI) system.
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Linear State Space System

ẋ(t) = Ax(t) + Bu(t), x(0) = x0,

y(t) = Cx(t) + Du(t),

with

A ∈ Rn×n: the system matrix

B ∈ Rn×m: the input matrix

C ∈ Rq×n: the output matrix

D ∈ Rq×n: the throughput

x(t) ∈ Rn: the system’s state

u(t) ∈ Rm: the input or control

y(t) ∈ Rq: the output or measurements

n, m, q ∈ N: the system dimensions
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Stability

Definition (Exponential Stability and Stabilizability)

A (possibly nonlinear) dynamical system can be called exponentially stable, if all solutions x
(starting in a neighborhood of the origin), decay to the origin exponentially, i.e.

‖x(t)‖ ≤ Me−λt‖x(0)‖, t > 0,

for some constants M, λ > 0.

The LTI system ẋ = Ax + Bu is called stable, if

‖etA‖ ≤ Me−λt , t > 0.

The LTI system is called stabilizable, if there exists K ∈ Rm×n such that

‖et(A−BK)‖ ≤ Me−λt , t > 0.
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Exponential Stability

‖x(t)‖ ≤ Me−λt‖x(0)‖, t > 0,

M > 1 captures transient behavior

λ denotes the rate of decay.
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Most of my research – bridging the gap

Navier-Stokes Equations:

v̇ + (v · ∇)v − ν∆v +∇p = Bu,
∇ · v = 0

controlled
by

LTIs:

ẋ(t) = Ax(t) + Bu(t), x(0) = x0,

y(t) = Cx(t) + Du(t),

nonlinear

∞-dimensional

accurate

←→
not nonlinear

not ∞-dimensional

not accurate
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Linear vs. Nonlinear
How can linear theory work for nonlinear systems?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The self-referential promise of linear control theory

the linear controller works
↔

everything is under control
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Set point stabilization stabilization of a nonlinear system:

ẋ = f (x) + Bu

Linearization about x∗ = 0 with f (x∗) = 0:

ẋ = f (0) + Dx f (0)x + r(x) + Bu = A∗x + Bu + r(x)

with

A∗ = Dx f (0) – the Jacobian of f at 0

r(·) ∈ o(‖ · ‖), i.e. limx→0
‖r(x)‖
‖x‖ = 0
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Theorem

If the linearized (around x∗ = 0) problem can be stabilized, then the nonlinear problem can be stabilized
locally around x∗ = 0.

Proof:

Let A∗ − BK be stable, with et(A∗−BK) ≤ Me−λt , and set u = −Kx .

By the Variation of Constant formula we have

x(t) = et(A∗−BK)x(0) +

∫ t

0

e(t−s)(A∗−BK)r(x(s)) ds.

By r ∈ o, for any η > 0, there exists δ(η) > 0 such that ‖r(x)‖ < η‖x‖, for ‖x‖ < δ(η)

and with Gronwall inequality, we arrive at the inequality

‖x(t)‖ ≤ ‖x(0)‖Me−(λ−ηM)t

that holds for t > 0 ... ... as long as ‖x(t)‖ < δ(η).
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Linear Approximations vs. Nonlinear Control

‖x(t)‖ ≤ ‖x(0)‖Me−(λ−ηM)t

that holds for t > 0 ... ... as long as ‖x(t)‖ < δ(η).

Now

1. by continuity of x , for x(0) < δ(η), we have x(0 + ε) < δ(η) – this inequality is not void!

2. choose η < λ
M , then λ− ηM > 0 and e−(λ−ηM)t < 1 and exponentially decaying

3. choose x(0), with ‖x(0)‖ < δ(η)
M (note that M > 1), so that

‖x(t)‖ ≤ ‖M‖‖x(0)‖e−(λ−ηM)t< δ(η)e−(λ−ηM)t

for t > 0.
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Some side remarks

Linearized stability sufficient for nonlinear (local) stabilizability

Similar things hold for ∞-dimensional systems (aka control of
nonlinear PDEs); [Raymond’06, Breiten&Kunisch’14].

What if there is no linearization?

In finite dimensions – f not even Lipshitz – locally nonunique
solutions.
Existence of a suitable linearization is a general problem in
∞-dimensions.

Sometimes, better stay nonlinear: A baby stroller is (nonlinearly)
controllable but not linearly stabilizable.

Lecture by [J.M. Coron’11]
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Challenges

So, with a linearization A∗ and with a controller K , so that the LTI

ẋ = (A∗ − BK )x

is stable, the nonlinear system
ẋ = f (x)− BKx

is locally stabilized around x∗.

Q: What if A∗, i.e. the linearization, is faulty?

Q: How to compute K?
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Flow Control Problem

Problem: The steady state is unstable: any perturbation – no matter how
small – will trigger a transition into a periodic regime.

Goal: Stabilizing feedback controller that can handle:

limited measurements,

system uncertainties.
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Flow Control Problem
Idea: Linearization-based feedback control for stabilization of the steady state.

[Raymond06, Benner&JH’15, Breiten&Kunisch’14]

v̇ + (v · ∇)v − ν∆v +∇p = Bu,

∇ · v = 0

Linearization &
Semi-Discretization

v̇ − Av − J>p = Bu,

Jv = 0

Fragility of Observer-Based Controllers

LQG controllers have no guaranteed robustness margins and will likely fail in the presence of system
uncertainties.

0 6 12 18

0

1

LQG-feedback

0 6 12 18

0

1

corrupted LQG-feedback

0 6 12 18

0

1

corrupted state-feedback
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Introduction to Robust Control
In fact: [IEEE Transactions on Automatic Control (’78)]:

Good news: H∞ controllers work under uncertainties like

[Curtain’03]: Galerkin approximations of evolution systems,

[Benner&JH’17]: stable mixed-FEM approximation of the flow equations,

[Benner&JH’16]: errors in the linearization point,

[MustafaBenner&Glover’91, Benner&JH&Werner’22]: model reduction of the controller,

that can be qualified as a coprime factor perturbations.

Moreover,

[this talk, JH’21]: the coprime factor perturbation depends smoothly on the linearization error.

[this talk, Benner&JH&Werner’21]: we can compute the controller and its robustness
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Uncertain Linearization Points are Coprime Factor Uncertainties

Transfer functions

Mapping of inputs (controls) to outputs (measurements) in frequency domain, i.e., after Laplace
transform of the system.

ẋ = Ax + Bu sX (s) = AX (s) + BU(s)L(s)−→
y = Cx Y (s) = CX (s)

= C (sI − A)−1B︸ ︷︷ ︸
=:G(s)

U(s).

1. A nominal system has the transfer function

G (s) = C (sI − A)−1B ∈ Cq,r .

2. But uncertainty in the operator gives another transfer function

G∆(s) = C (sI − A− δA)−1B ∈ Cq,r .
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Uncertain Linearization Points are Coprime Factor Uncertainties

Coprime Factorization

Given a transfer function G(s) of a linear system,

G(s) = M−1(s)N(s)

is a (left) coprime factorization if there exist X (s),Y (s) such that the Bezout identity

M(s)X (s) + N(s)Y (s) = I

holds. Here, N,M,X ,Y are all rational matrix functions with all poles in the open left half of the complex plane,
i.e., they all represent stable linear systems.

Coprime Factor Perturbation

G∆(s) = [N(s) + δN(s)] [M(s) + δM(s)]−1 (s) ≈ G(s) = N(s)M−1(s),

where N + δN ,M + δN are stable.
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Uncertain Linearization Points are Coprime Factor Uncertainties

Next we will show that

Inexact linearizations of incompressible Navier-Stokes equations

can be qualified as a coprime factor uncertainty

that smoothly depends on the linearization error.

So that the standard H∞-theory for robust controller design applies.
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Linearized Navier-Stokes Equations as Linear System

We consider

Γ1

Γ2

Γw

Γw

Γw

ΓoutΓ0

V̇ + (V · ∇)V +∇P − ν∆V = 0,

divV = 0, in Ω,

ν ∂V∂n − nP = 0 on Γout,

V = 0 on Γw ,

V = ng0 · α on Γ0,

V = ng1 · u1 on Γ1,

V = ng2 · u2 on Γ2,
where

V . . . velocity,

P . . . pressure,

ν . . . diffusion parameter,

g0, g1, g2 . . . spatial shape functions,

u1, u2 . . . scalar input functions,

α . . . magnitude of the inflow velocity,

n . . . normal vector at the boundaries.
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Linearized Navier-Stokes Equations as Linear System

A linearized I/O model is obtained as follows:

1. We relax the Dirichlet control V
∣∣
Γ1

= ng1u−ε(ν ∂V∂n − Pn)

2. Let vα be the steady state solution for zero inputs,
and let vδ(t) = V (t)− vα the deviation.

3. We consider the linearization

v̇δ + (vδ · ∇)vα + (vα · ∇)vδ +∇pδ − ν∆vδ = 0

that is a valid approximation as long as vδ is small.
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Linearized Navier-Stokes Equations as Linear System
Then, with

Hdiv := {v ∈ L2(Ω) : div v = 0, v · n = 0 on Γw ∩ Γout}

as the state space, the (orthogonal) Leray-projector

Π ∈ L(L2(Ω)) : L2(Ω) 7→ Hdiv ,

and x := Πvδ the model reads1

ẋ = Aαx + ΠBu in Hdiv ,

y = Cx

where

Aα : D(Aα) ⊂ Hdiv → Hdiv is the Oseen operator

ΠB : R2 → Hdiv is the input operator

C : Hdiv → Rq is the output operator

1The pressure pδ is gone, since Π maps along the orthogonal complement of the gradient
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Boundedness of the input operator

Lemma (JH’21, Benner&JH’18)

If gi ∈ H
1/2
00 (Γi )

2, i = 1, 2, and ε > 0, then the input operator B : R2 → L2(Ω) for the Oseen system
that realizes

V = ngiui − ε(ν ∂V∂n − nP) on Γi , i = 1, 2

is bounded.

Outline of the proof:

By definition B = ΠB, with Π being the orthogonal projector onto Hdiv .

We show that 〈ΠBu,w〉L2(Ω) = 〈Bu,Πw〉L2(Ω).

Thus, 〈Bu,w〉L2(Ω) = − 1
ε

∑
i=1,2

∫
Γi

Πw · (gin) ds ui .

Since Πw · n ∈ H−1/2(Γi ), it follows that ΠB : R2 → L2(Ω) is bounded.

By definition ΠB = B.

2H
1/2
00 (Γi ) contains those functions out of H1/2(Γi ) that are boundedly extendable by 0 to the complete boundary.
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Linearized Navier-Stokes Equations as Linear System

3 The linearized model is a standard (A,B,C ) system

we know: Aα is the generator of a C0-semi group [Raymond’06]

we choose: C to be bounded
we have just shown: ΠB is bounded.

Ù The theory for robust stabilization of linearization errors applies.

ÙAssume that the linearization point vα is uncertain

that is vα ← vα + δv
then A is perturbed A← A + δA
as is the transferfunction

Gδ(s) = C(sI − A− δA)−1B
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Linearized Navier-Stokes Equations as Linear System

Theorem (JH’21)

Consider the perturbed Oseen system and let L ∈ L(Rk ,V 0) and δA(δv ) be such that (A + δA − LC ) is
exponentially stable for all δA small. Then the associated transferfunction Gδ has a coprime factorization

Gδ = [N + δN ][M + δM ]−1,

where NM−1 = G is the transferfunction associated with the unperturbed system, and

‖δN‖H∞ → 0 and ‖δM‖H∞ → 0

as δv → 0.

Remark on the existence of L

The existence of the uniformly stabilizing L (as we have assumed it here) is much less critical then the
existence of a robust controller (because the L is a state feedback).
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Linearization error as CFP – Outline of the proof: I

1. The perturbation δN has the representation3

δN(s) = CδA(sI − A + LC )−1(sI − A− δA + LC )−1ΠB,

2. and can be realized as a cascaded system

v̇1 = (A + δA − LC )v1 + ΠBu, (F1)

v̇2 = (A− LC )v2 + v1 (F2)

y = CδAv2,

in the time domain.

3. This results in the transferfunction (in the time domain):

y = CδAF2F1u.
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Linearization error as CFP – Outline of the proof: II

For the transfer function in the time domain

y = CδAF2F1u

we have that:

1. Certainly ‖CδA‖ → 0 if ‖δA‖ → 0, but only on function spaces with sufficient regularity. (The
operator δA contains spatial derivatives)

2. Therefore, we use

the uniform stability of A + δA − LC

and the analyticity of the semi-group that is generated by A− LC

to show that F2F1 provides the needed regularity.
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Linearization error as CFP – Outline of the proof: III

3. By means of a classical result4, that connects frequency- and time domain, we infer that dass

‖δN‖H∞ ≤ ‖CδAF2F1‖L2→L2 ,

so that ‖δA‖ → 0 implies that

‖δN‖H∞ → 0.

3Benner&JH(2016) IFAC PapersOnLine based on the textbook by Curtain&Zwart(1995)
4Weiss(1991) Representation of shift-invariant operators on L2 by H∞ transfer functions
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How can this help?

One can show [Mustafa&Glover’91, Benner/JH/Werner’19, Zhou/Doyle/Glover’96]:

that uncertainty in the linearization can be formulated as an normalized H∞ robust control problem

and that H∞ robust controller K of robustness margin γ will stabilize the perturbed system if∥∥[δN δM
]∥∥
H∞

< γ−1.

So let’s compute such a controller...
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Flow Control Problem
H∞ Riccati Equations [Zhou/Doyle/Glover’95]

Given some simplifying assumptions, there exists an admissible controller K (s) ⇐⇒:

1. There exists a stabilizing solution X∞ = X>∞ ≥ 0 to the regulator Riccati equation

A>X∞ + X∞A + C>C − (1− γ−2)X∞BB>X∞ = 0.

2. There exists a stabilizing solution Y∞ = Y>∞ ≥ 0 to the filter Riccati equation

AY∞ + Y∞A> + BB> − (1− γ−2)Y∞C>CY∞ = 0.

3. It holds γ2 > λmax(Y∞X∞).

The central (or minimum entropy) controller K̂ (s) = Ĉ (sI − Â)−1B̂ is given by

Â = A− (1− γ−2)BB>X∞ − Z∞Y∞C>C , B̂ = Z∞Y∞C>, Ĉ = −B>X∞,

with Z∞ = (In − γ−2X∞Y∞)−1.
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H∞ Robust Controller and Riccati Equations

Arising Challenges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Large-Scale Matrix Equations

How to solve the arising large-scale sparse Riccati equations

A>X∞ + X∞A + C>1 C1 + X∞(γ−2B1B
>
1 − B2B

>
2 )X∞ = 0?

Low-rank Riccati iteration solves indefinite Riccati equations by an approximation

X∞ ≈ ZZ>,

with Z ∈ Rn×r and r � n. [Lanzon/Feng/Anderson ’07, Benner/Heiland/W. ’22a]

High Dimensional Controller

How to construct a low dimensional K̂ (s) for faster evaluation?

Use model order reduction based on X∞ and Y∞.

⇒ H∞ Balanced Truncation
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(Still) Stabilizing Reduced-Order Controller
Notation:

normalized left coprime factorizations G = M−1N, Gr = M−1
r Nr

(for computation see [Benner/Heiland/W. ’19]),

β =
√

1− γ−2.

The approximation error of the H∞ balanced truncation is given by∥∥[β(N − Nr ) M −Mr

]∥∥
H∞

=: βε̂ ≤ βε = 2
n∑

k=r+1

βσH∞k√
1 + β2

(
σH∞k

)2
,

where σH∞k are the H∞ characteristic values.

Theorem [Mustafa/Glover ’91]

The reduced-order H∞ controller is guaranteed to stabilize the full-order system if

ε̂(β + γ) < 1 or ε(β + γ) < 1.
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Numerical Realization of the DAE Structure
For consistent initial values, i.e., Jv0 = 0, the semi-discretized Navier-Stokes equation can be realized by
an ODE system:

Ev̇ = Av + J>p + Bu,

0 = Jv ,

y = Cv ,

Ev̇ = Π>AΠv + Π>B,

y = CΠv ,

where Π = Inv − E−1J>(JE−1J>)−1J is the discrete Leray projection.

Implicit Realization [Heinkenschloss&Sorensen&Sun ’08]

The explicit projection Π can be avoided in the numerical methods by solving saddle point problems of
the type [

A + siE J>

J 0

] [
X
∗

]
=

[
Y
0

]
.
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Linearization Uncertainties
In general, an uncertainty A∆ in the linearization A ...

E ẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t)

E ẋ(t) = [A+ A∆]x(t) + Bu(t),

y(t) = Cx(t)

... is an additive uncertainty in the transfer function

G (s) = C(sE − A)−1B
G∆(s) = C(sE − A−A∆)−1B

= G (s) + G̃ (s)

where G̃ (s) = CA∆(sE − A)−1(sE − A−A∆)−1B.

Additive uncertainties can be compensated by robust H∞ controller design.
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Double Cylinder
Setup: Stabilization of the steady state [Benner&JH&Werner’21]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(a) Steady state. (b) Natural flow.

Navier-Stokes equations discretized by Taylor-Hood finite elements
system order n = 51 337
Reynolds number 60
boundary control: individual rotation of both cylinders
observations: 3 velocity sensors in the wake behind the cylinders

robustness margin: γ = 12.5418
linearization error: disturbed Reynolds number
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Double-cylinder: Results [Benner/Heiland/W. ’22]
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