

Numerical Methods in Control and Optimization of Dynamical Systems

Jan Heiland

Peter Benner

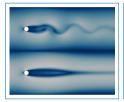
Steffen W.R. Werner

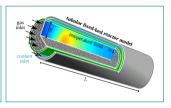
January 16, 2023

BIMoS Days at TU Berlin

Supported by:

Control



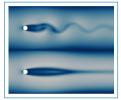


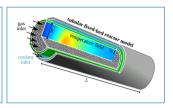
Optimization

- Stabilization of
- Small Deviations
- Linear Theory
- General approaches

- Large changes
- Nonlinear methods
- Data-driven approaches

Control





Optimization

- Stabilization of
- Small Deviations
- Linear Theory
- General approaches

Optimal Control

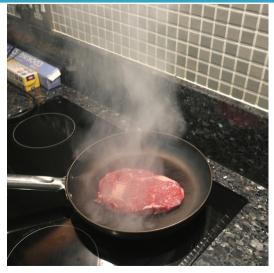
- Large changes
- Nonlinear methods
- Data-driven approaches

- 1. Introduction to Linear Time Invariant Systems
- 2. Linear Approximations vs. Nonlinear Control
- 3. Introduction to Robust Control
- 4. Uncertain Linearization Points are Coprime Factor Uncertainties
- 5. Linearized Navier-Stokes Equations as Linear System
- 6. \mathcal{H}_{∞} Robust Controller and Riccati Equations
- 7. Numerical Examples

Typical Situation

- Fry a steak
- The cook controls the heat at the fireplace
- and observes the process, e.g. via measuring the temperature in the inner

Typical Situation

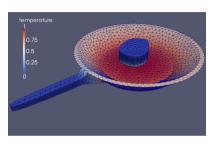


■ The model

$$\begin{split} \dot{\theta} &= \nabla \cdot (\nu \nabla \theta) & \text{ in } (0, \infty) \times \Omega, \\ \theta &= u, & \text{ at the hob}, \\ \theta(0) &= 0. \end{split}$$

- The cook controls the heat at the fireplace, which we denote by *u*
- **and** observes the process, e.g. he measures the temperature y in the center: $y = f(\theta)$.

Simulation



■ The model:

$$\begin{split} \dot{\theta} &= \nabla \cdot (\nu \nabla \theta), \\ \theta &= \textbf{\textit{u}}, \\ \theta(0) &= 0. \end{split} \tag{at the hob)}, \label{eq:theta_theta}$$

- \blacksquare The cook controls the heating u
- and observes the process via $y = f(\theta)$.
- A Finite Element discretization [GAUL'13] of the problem leads to the finite dimensional model

$$\dot{\theta}(t) = A\theta(t) + Bu(t), \quad \theta(0) = 0,$$

 $y(t) = C\theta(t),$

a linear time invariant (LTI) system.

Linear State Space System

$$\dot{x}(t) = Ax(t) + Bu(t), \quad x(0) = x_0,$$

$$y(t) = Cx(t) + Du(t),$$

- $\mathbf{x}(t) \in \mathbb{R}^n$: the system's state
- $u(t) \in \mathbb{R}^m$: the input or control
- $y(t) \in \mathbb{R}^q$: the output or measurements
- n, m, $q \in \mathbb{N}$: the system dimensions

Linear State Space System

$$\dot{x}(t) = Ax(t) + Bu(t), \quad x(0) = x_0,$$

 $y(t) = Cx(t) + Du(t),$

- $A \in \mathbb{R}^{n \times n}$: the system matrix
- $B \in \mathbb{R}^{n \times m}$: the input matrix
- $C \in \mathbb{R}^{q \times n}$: the output matrix
- lacksquare $D \in \mathbb{R}^{q \times n}$: the throughput

Linear State Space System

$$\dot{x}(t) = Ax(t) + Bu(t), \quad x(0) = x_0,$$

 $y(t) = Cx(t) + Du(t),$

- lacksquare $A \in \mathbb{R}^{n \times n}$: the system matrix
- $B \in \mathbb{R}^{n \times m}$: the input matrix
- $C \in \mathbb{R}^{q \times n}$: the output matrix
- $D \in \mathbb{R}^{q \times n}$: the throughput

- $\mathbf{x}(t) \in \mathbb{R}^n$: the system's state
- $ullet u(t) \in \mathbb{R}^m$: the input or control
- $y(t) \in \mathbb{R}^q$: the output or measurements
- n, m, $q \in \mathbb{N}$: the system dimensions

Definition (Exponential Stability and Stabilizability)

 $lue{A}$ (possibly nonlinear) dynamical system can be called exponentially stable, if all solutions x (starting in a neighborhood of the origin), decay to the origin exponentially, i.e.

$$||x(t)|| \le Me^{-\lambda t}||x(0)||, \quad t > 0,$$

for some constants M, $\lambda > 0$.

Definition (Exponential Stability and Stabilizability)

A (possibly nonlinear) dynamical system can be called exponentially stable, if all solutions x (starting in a neighborhood of the origin), decay to the origin exponentially, i.e.

$$||x(t)|| \le Me^{-\lambda t}||x(0)||, \quad t > 0,$$

for some constants M, $\lambda > 0$.

■ The LTI system $\dot{x} = Ax + Bu$ is called stable, if

$$||e^{tA}|| \leq Me^{-\lambda t}, \quad t > 0.$$

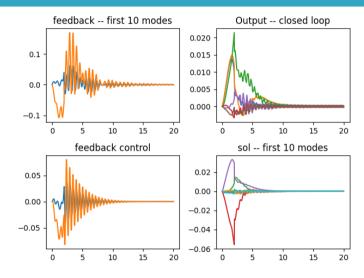
■ The LTI system is called stabilizable, if there exists $K \in \mathbb{R}^{m \times n}$ such that

$$\|e^{t(A-BK)}\| \le Me^{-\lambda t}, \quad t > 0.$$

Exponential Stability

$$||x(t)|| \le Me^{-\lambda t}||x(0)||, \quad t > 0,$$

- *M* > 1 captures transient behavior
- lacksquare λ denotes the rate of decay.



- 1. Introduction to Linear Time Invariant Systems
- 2. Linear Approximations vs. Nonlinear Control
- 3. Introduction to Robust Contro
- 4. Uncertain Linearization Points are Coprime Factor Uncertainties
- 5. Linearized Navier-Stokes Equations as Linear System
- 6. \mathcal{H}_{∞} Robust Controller and Riccati Equations
- 7. Numerical Examples

Most of my research – bridging the gap

Navier-Stokes Equations:

$$\dot{v} + (v \cdot \nabla)v - \nu \Delta v + \nabla p = \mathcal{B}u,$$
$$\nabla \cdot v = 0$$

controlled by LTIs:

$$\dot{x}(t) = Ax(t) + Bu(t), \quad x(0) = x_0,$$

 $y(t) = Cx(t) + Du(t),$

- nonlinear
- ∞-dimensional
- accurate

- not nonlinear
- not ∞-dimensional
- not accurate

csc Linear vs. Nonlinear

How can linear theory work for nonlinear systems?

The self-referential promise of linear control theory

the linear controller works

everything is under control

Set point stabilization stabilization of a nonlinear system:

$$\dot{x} = f(x) + Bu$$

Linearization about $x_* = 0$ with $f(x_*) = 0$:

$$\dot{x} = f(0) + D_x f(0)x + r(x) + Bu = A_* x + Bu + r(x)$$

- lacksquare $A_* = D_x f(0)$ the Jacobian of f at 0
- $r(\cdot) \in o(\|\cdot\|)$, i.e. $\lim_{x\to 0} \frac{\|r(x)\|}{\|x\|} = 0$

Theorem

If the linearized (around $x_* = 0$) problem can be stabilized, then the nonlinear problem can be stabilized locally around $x_* = 0$.

Proof:

- Let $A_* BK$ be stable, with $e^{t(A_* BK)} \leq Me^{-\lambda t}$, and set u = -Kx.
- By the Variation of Constant formula we have

$$x(t) = e^{t(A_* - BK)}x(0) + \int_0^t e^{(t-s)(A_* - BK)}r(x(s)) ds.$$

- By $r \in o$, for any $\eta > 0$, there exists $\delta(\eta) > 0$ such that $\|r(x)\| < \eta \|x\|$, for $\|x\| < \delta(\eta)$
- and with *Gronwall inequality*, we arrive at the inequality

$$||x(t)|| \le ||x(0)|| Me^{-(\lambda - \eta M)t}$$

that holds for t > 0 ...

... as long as $||x(t)|| < \delta(\eta)$.

Linear Approximations vs. Nonlinear Control

$$||x(t)|| \le ||x(0)|| Me^{-(\lambda - \eta M)t}$$

that holds for t > 0 ...

... as long as
$$||x(t)|| < \delta(\eta)$$
.

Now

- 1. by continuity of x, for $x(0) < \delta(\eta)$, we have $x(0 + \varepsilon) < \delta(\eta)$ this inequality is not void!
- 2. choose $\eta<\frac{\lambda}{M}$, then $\lambda-\eta M>0$ and $e^{-(\lambda-\eta M)t}<1$ and exponentially decaying
- 3. choose x(0), with $||x(0)|| < \frac{\delta(\eta)}{M}$ (note that M > 1), so that

$$||x(t)|| \le ||M|| ||x(0)|| e^{-(\lambda - \eta M)t} < \delta(\eta) e^{-(\lambda - \eta M)t}$$

for
$$t > 0$$
.

Some side remarks

- Linearized stability sufficient for nonlinear (local) stabilizability
- Similar things hold for ∞-dimensional systems (aka control of nonlinear PDEs); [RAYMOND'06, BREITEN&KUNISCH'14].
- What if there is no linearization?
 - In finite dimensions − *f* not even Lipshitz − locally nonunique solutions.
 - Existence of a suitable linearization is a general problem in ∞-dimensions.

Some side remarks

- Linearized stability sufficient for nonlinear (local) stabilizability
- Similar things hold for ∞-dimensional systems (aka control of nonlinear PDEs); [RAYMOND'06, BREITEN&KUNISCH'14].
- What if there is no linearization?
 - In finite dimensions f not even Lipshitz locally nonunique solutions.
 - Existence of a suitable linearization is a general problem in ∞-dimensions.
- Sometimes, better stay nonlinear: A baby stroller is (nonlinearly) controllable but not linearly stabilizable.

Lecture by [J.M. CORON'11]

Challenges

So, with a linearization A_* and with a controller K, so that the LTI

$$\dot{x} = (A_* - BK)x$$

is stable, the nonlinear system

$$\dot{x} = f(x) - BKx$$

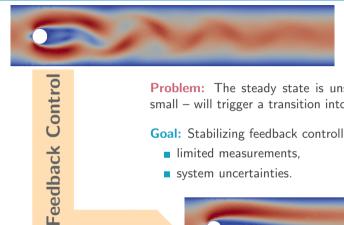
is locally stabilized around x_* .

Q: What if A_* , i.e. the linearization, is faulty?

Q: How to compute K?

- 1. Introduction to Linear Time Invariant Systems
- 2. Linear Approximations vs. Nonlinear Control
- 3. Introduction to Robust Control
- 4. Uncertain Linearization Points are Coprime Factor Uncertainties
- 5. Linearized Navier-Stokes Equations as Linear System
- 6. \mathcal{H}_{∞} Robust Controller and Riccati Equations
- 7. Numerical Examples

Flow Control Problem



Problem: The steady state is unstable: any perturbation – no matter how small – will trigger a transition into a periodic regime.

Goal: Stabilizing feedback controller that can handle:

- limited measurements.
- system uncertainties.

CSC

Flow Control Problem

Idea: Linearization-based feedback control for stabilization of the steady state.

[RAYMOND06, BENNER&JH'15, BREITEN&KUNISCH'14]

$$\dot{v} + (v \cdot \nabla)v - \nu \Delta v + \nabla p = Bu,$$
$$\nabla \cdot v = 0$$

Linearization & Semi-Discretization

$$\dot{v} - Av - J^{\top} p = Bu,$$

$$Jv = 0$$

CSC

Flow Control Problem

Idea: Linearization-based feedback control for stabilization of the steady state.

[RAYMOND06, BENNER&JH'15, BREITEN&KUNISCH'14]

$$\dot{v} + (v \cdot \nabla)v - \nu \Delta v + \nabla p = Bu,$$
$$\nabla \cdot v = 0$$

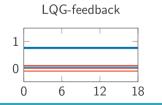
Linearization & Semi-Discretization

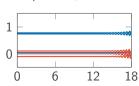
$$\dot{v} - Av - J^{\top} p = Bu,$$

$$Jv = 0$$

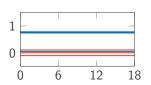
Fragility of Observer-Based Controllers

LQG controllers have no guaranteed robustness margins and will likely fail in the presence of system uncertainties.





corrupted state-feedback



Introduction to Robust Control

In fact: [IEEE Transactions on Automatic Control ('78)]:

Guaranteed Margins for LQG Regulators

JOHN C. DOYLE

Abstract-There are none.

Good news: \mathcal{H}_{∞} controllers work under uncertainties like

- [Curtain'03]: Galerkin approximations of evolution systems,
- [Benner&JH'17]: stable mixed-FEM approximation of the flow equations,
- [Benner&JH'16]: errors in the linearization point,
- [MUSTAFABENNER&GLOVER'91, BENNER&JH&WERNER'22]: model reduction of the controller,

Introduction to Robust Control

[IEEE TRANSACTIONS ON AUTOMATIC CONTROL ('78)]:

Guaranteed Margins for LQG Regulators JOHN C. DOYLE

Abstract-There are none.

Good news: \mathcal{H}_{∞} controllers work under uncertainties like

- [Curtain'03]: Galerkin approximations of evolution systems.
- [Benner&JH'17]: stable mixed-FEM approximation of the flow equations.
- [Benner&JH'16]: errors in the linearization point,
- [MustafaBenner&Glover'91, Benner&JH&Werner'22]: model reduction of the controller, that can be qualified as a coprime factor perturbations.

Introduction to Robust Control

In fact: [IEEE Transactions on Automatic Control ('78)]:

Guaranteed Margins for LQG Regulators JOHN C. DOYLE

Abstract-There are none.

Good news: \mathcal{H}_{∞} controllers work under uncertainties like

- [Curtain'03]: Galerkin approximations of evolution systems,
- [Benner&JH'17]: stable mixed-FEM approximation of the flow equations,
- [Benner&JH'16]: errors in the linearization point,
- [MUSTAFABENNER&GLOVER'91, BENNER&JH&WERNER'22]: model reduction of the controller, that can be qualified as a coprime factor perturbations.

Moreover,

- [THIS TALK, JH'21]: the coprime factor perturbation depends smoothly on the linearization error.
- [THIS TALK, BENNER&JH&WERNER'21]: we can compute the controller and its robustness

- 1. Introduction to Linear Time Invariant Systems
- 2. Linear Approximations vs. Nonlinear Control
- 3. Introduction to Robust Contro
- 4. Uncertain Linearization Points are Coprime Factor Uncertainties
- 5. Linearized Navier-Stokes Equations as Linear System
- 6. \mathcal{H}_{∞} Robust Controller and Riccati Equations
- 7. Numerical Examples

Transfer functions

Mapping of inputs (controls) to outputs (measurements) in frequency domain, i.e., after Laplace transform of the system.

$$\dot{x} = Ax + Bu$$
 $\xrightarrow{\mathcal{L}(s)}$ $sX(s) = AX(s) + BU(s)$
 $y = Cx$ $Y(s) = CX(s)$

Transfer functions

Mapping of inputs (controls) to outputs (measurements) in frequency domain, i.e., after Laplace transform of the system.

$$\dot{x} = Ax + Bu
y = Cx$$

$$sX(s) = AX(s) + BU(s)
Y(s) = CX(s) = \underbrace{C(sI - A)^{-1}B}_{=:G(s)} U(s).$$

Transfer functions

Mapping of inputs (controls) to outputs (measurements) in frequency domain, i.e., after Laplace transform of the system.

$$\dot{x} = Ax + Bu
y = Cx$$

$$sX(s) = AX(s) + BU(s)
Y(s) = CX(s) = \underbrace{C(sI - A)^{-1}B}_{=:G(s)} U(s).$$

1. A nominal system has the transfer function

$$G(s) = C(sI - A)^{-1}B \in \mathbb{C}^{q,r}.$$

Transfer functions

Mapping of inputs (controls) to outputs (measurements) in frequency domain, i.e., after Laplace transform of the system.

$$\dot{x} = Ax + Bu
y = Cx$$

$$sX(s) = AX(s) + BU(s)
Y(s) = CX(s) = \underbrace{C(sI - A)^{-1}B}_{=:G(s)} U(s).$$

1. A nominal system has the transfer function

$$G(s) = C(sI - A)^{-1}B \in \mathbb{C}^{q,r}$$
.

2. But uncertainty in the operator gives another transfer function

$$G_{\Delta}(s) = C(sI - A - \delta_A)^{-1}B \in \mathbb{C}^{q,r}.$$

Coprime Factorization

Given a transfer function G(s) of a linear system,

$$G(s) = M^{-1}(s)N(s)$$

is a (left) coprime factorization if there exist X(s), Y(s) such that the Bezout identity

$$M(s)X(s) + N(s)Y(s) = I$$

holds. Here, N, M, X, Y are all rational matrix functions with all poles in the open left half of the complex plane, i.e., they all represent stable linear systems.

Coprime Factorization

Given a transfer function G(s) of a linear system,

$$G(s) = M^{-1}(s)N(s)$$

is a (left) coprime factorization if there exist X(s), Y(s) such that the Bezout identity

$$M(s)X(s) + N(s)Y(s) = I$$

holds. Here, N, M, X, Y are all rational matrix functions with all poles in the open left half of the complex plane, i.e., they all represent stable linear systems.

Coprime Factor Perturbation

$$G_{\Delta}(s) = [N(s) + \delta_{N}(s)][M(s) + \delta_{M}(s)]^{-1}(s) \approx G(s) = N(s)M^{-1}(s),$$

where $N + \delta_N$, $M + \delta_N$ are stable.

Uncertain Linearization Points are Coprime Factor Uncertainties

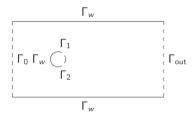
Next we will show that

- Inexact linearizations of incompressible Navier-Stokes equations
- can be qualified as a coprime factor uncertainty
- that smoothly depends on the linearization error.

So that the standard $\mathcal{H}_{\infty}\text{-theory}$ for robust controller design applies.

- 1. Introduction to Linear Time Invariant Systems
- 2. Linear Approximations vs. Nonlinear Control
- 3. Introduction to Robust Contro
- 4. Uncertain Linearization Points are Coprime Factor Uncertainties
- 5. Linearized Navier-Stokes Equations as Linear System
- 6. \mathcal{H}_{∞} Robust Controller and Riccati Equations
- 7. Numerical Examples

We consider



where

- *V* . . . velocity,
- *P* . . . pressure,
- ν ... diffusion parameter,

$$\begin{split} \dot{V} + (V \cdot \nabla)V + \nabla P - \nu \Delta V &= 0, \\ \text{div } V &= 0, \quad \text{in } \Omega, \end{split}$$

$$\nu \frac{\partial V}{\partial n} - nP &= 0 \text{ on } \Gamma_{\text{out}}, \\ V &= 0 \text{ on } \Gamma_{w}, \\ V &= ng_{0} \cdot \alpha \text{ on } \Gamma_{0}, \\ V &= ng_{1} \cdot u_{1} \text{ on } \Gamma_{1}, \end{split}$$

 $V = ng_2 \cdot u_2$ on Γ_2 .

- \blacksquare $g_0, g_1, g_2 \dots$ spatial shape functions,
- $u_1, u_2 \dots$ scalar input functions,
- α ... magnitude of the inflow velocity,
- n . . . normal vector at the boundaries.

A linearized I/O model is obtained as follows:

- 1. We relax the Dirichlet control $V|_{\Gamma_1} = ng_1u \varepsilon(\nu\frac{\partial V}{\partial n} Pn)$
- 2. Let v_{α} be the steady state solution for zero inputs, and let $v_{\delta}(t) = V(t) v_{\alpha}$ the deviation.
- 3. We consider the linearization

$$\dot{v}_{\delta} + (v_{\delta} \cdot \nabla)v_{\alpha} + (v_{\alpha} \cdot \nabla)v_{\delta} + \nabla p_{\delta} - \nu \Delta v_{\delta} = 0$$

that is a valid approximation as long as v_{δ} is small.

Then, with

$$\mathcal{H}_{div} := \{ v \in L^2(\Omega) : \text{div } v = 0, v \cdot n = 0 \text{ on } \Gamma_w \cap \Gamma_{\text{out}} \}$$

as the state space, the (orthogonal) Leray-projector

$$\Pi \in \mathcal{L}(L^2(\Omega)) \colon L^2(\Omega) \mapsto \mathcal{H}_{div},$$

and $x := \Pi v_{\delta}$ the model reads¹

$$\dot{x} = A_{\alpha}x + \Pi Bu$$
 in \mathcal{H}_{div} , $y = Cx$

where

- lacksquare $A_{lpha}\colon \mathcal{D}(A_{lpha})\subset \mathcal{H}_{ extit{div}} o \mathcal{H}_{ extit{div}}$ is the *Oseen* operator
- lacksquare $\Pi B\colon \mathbb{R}^2 o \mathcal{H}_{ extit{div}}$ is the input operator
- $lackbox{C}: \mathcal{H}_{div} o \mathbb{R}^q$ is the output operator

¹The pressure p_{δ} is gone, since Π maps along the orthogonal complement of the gradient

Boundedness of the input operator

Lemma (JH'21, Benner&JH'18)

If $g_i \in H^{1/2}_{00}(\Gamma_i)^2$, i = 1, 2, and $\varepsilon > 0$, then the input operator $B \colon \mathbb{R}^2 \to L^2(\Omega)$ for the Oseen system that realizes

$$V = ng_i u_i - \varepsilon (\nu \frac{\partial V}{\partial n} - nP)$$
 on Γ_i , $i = 1, 2$

is bounded.

Outline of the proof:

- By definition $B = \Pi B$, with Π being the orthogonal projector onto \mathcal{H}_{div} .
- We show that $\langle \Pi B u, w \rangle_{L^2(\Omega)} = \langle B u, \Pi w \rangle_{L^2(\Omega)}$.
- Thus, $\langle Bu, w \rangle_{L^2(\Omega)} = -\frac{1}{\varepsilon} \sum_{i=1,2} \int_{\Gamma_i} \Pi w \cdot (g_i n) \, ds \, u_i$.
- Since $\Pi w \cdot n \in H^{-1/2}(\Gamma_i)$, it follows that $\Pi B \colon \mathbb{R}^2 \to L^2(\Omega)$ is bounded.
- By definition $\Pi B = B$.

 $^{^2}H_{00}^{1/2}(\Gamma_i)$ contains those functions out of $H^{1/2}(\Gamma_i)$ that are boundedly extendable by 0 to the complete boundary.

- ✓ The linearized model is a standard (A, B, C) system
 - we know: A_{α} is the generator of a C_0 -semi group [RAYMOND'06]
 - we choose: C to be bounded
 - we have just shown: ΠB is bounded.
- → The theory for robust stabilization of linearization errors applies.
- \leftarrow Assume that the linearization point v_{α} is uncertain
 - that is $v_{\alpha} \leftarrow v_{\alpha} + \delta_{v}$
 - then A is perturbed $A \leftarrow A + \delta_A$
 - as is the transferfunction

$$G_{\delta}(s) = C(sI - A - \delta_A)^{-1}B$$

Theorem (JH'21)

Consider the perturbed Oseen system and let $L \in \mathcal{L}(\mathbb{R}^k, V^0)$ and $\delta_A(\delta_v)$ be such that $(A + \delta_A - LC)$ is exponentially stable for all δ_A small. Then the associated transferfunction G_δ has a coprime factorization

$$G_{\delta} = [N + \delta_N][M + \delta_M]^{-1},$$

where $NM^{-1} = G$ is the transferfunction associated with the unperturbed system, and

$$\|\delta_N\|_{\mathcal{H}_\infty} o 0$$
 and $\|\delta_M\|_{\mathcal{H}_\infty} o 0$

as $\delta_v o 0$

Theorem (JH'21)

Consider the perturbed Oseen system and let $L \in \mathcal{L}(\mathbb{R}^k, V^0)$ and $\delta_A(\delta_v)$ be such that $(A + \delta_A - LC)$ is exponentially stable for all δ_A small. Then the associated transferfunction G_δ has a coprime factorization

$$G_{\delta} = [N + \delta_N][M + \delta_M]^{-1},$$

where $NM^{-1} = G$ is the transferfunction associated with the unperturbed system, and

$$\|\delta_N\|_{\mathcal{H}_\infty} o 0$$
 and $\|\delta_M\|_{\mathcal{H}_\infty} o 0$

as $\delta_{
m v}
ightarrow 0$

Remark on the existence of L

The existence of the uniformly stabilizing L (as we have assumed it here) is much less critical then the existence of a robust controller (because the L is a *state feedback*).

Linearization error as CFP – Outline of the proof: I

1. The perturbation δ_N has the representation³

$$\delta_N(s) = C\delta_A(sI - A + LC)^{-1}(sI - A - \delta_A + LC)^{-1}\Pi B,$$

2. and can be realized as a cascaded system

$$\dot{v}_1 = (A + \delta_A - LC)v_1 + \Pi B u,
\dot{v}_2 = (A - LC)v_2 + v_1
y = C\delta_A v_2,$$

$$(\mathcal{F}_1)$$

$$(\mathcal{F}_2)$$

in the time domain.

3. This results in the transferfunction (in the time domain):

$$y = C\delta_A \mathcal{F}_2 \mathcal{F}_1 u.$$

Linearization error as CFP – Outline of the proof: II

For the transfer function in the time domain

$$y = C\delta_A \mathcal{F}_2 \mathcal{F}_1 u$$

we have that:

- 1. Certainly $\|C\delta_A\| \to 0$ if $\|\delta_A\| \to 0$, but only on function spaces with sufficient regularity. (The operator δ_A contains spatial derivatives)
- 2. Therefore, we use
 - the uniform stability of $A + \delta_A LC$
 - lacksquare and the analyticity of the semi-group that is generated by A-LC

to show that $\mathcal{F}_2\mathcal{F}_1$ provides the needed regularity.

Linearization error as CFP – Outline of the proof: III

3. By means of a classical result⁴, that connects frequency- and time domain, we infer that dass

$$\|\delta_N\|_{\mathcal{H}_{\infty}} \leq \|C\delta_A\mathcal{F}_2\mathcal{F}_1\|_{L^2\to L^2},$$

so that $\|\delta_A\| \to 0$ implies that

$$\|\delta_N\|_{\mathcal{H}_\infty} \to 0.$$

³Benner&JH(2016) *IFAC PapersOnLine* based on the textbook by Curtain&Zwart(1995)

⁴Weiss(1991) Representation of shift-invariant operators on L^2 by H^{∞} transfer functions

How can this help?

One can show [Mustafa&Glover'91, Benner/JH/Werner'19, Zhou/Doyle/Glover'96]:

- lacksquare that uncertainty in the linearization can be formulated as an *normalized* \mathcal{H}_{∞} robust control problem
- lacksquare and that \mathcal{H}_{∞} robust controller K of robustness margin γ will stabilize the perturbed system if

$$\|\begin{bmatrix} \delta_{N} & \delta_{M} \end{bmatrix}\|_{\mathcal{H}_{\infty}} < \gamma^{-1}.$$

So let's compute such a controller...

- 1. Introduction to Linear Time Invariant Systems
- 2. Linear Approximations vs. Nonlinear Control
- 3. Introduction to Robust Contro
- 4. Uncertain Linearization Points are Coprime Factor Uncertainties
- 5. Linearized Navier-Stokes Equations as Linear System
- 6. \mathcal{H}_{∞} Robust Controller and Riccati Equations
- 7. Numerical Examples

Flow Control Problem

\mathcal{H}_{∞} Riccati Equations

[Zhou/Doyle/Glover'95]

Given some simplifying assumptions, there exists an admissible controller $K(s) \Longleftrightarrow$:

1. There exists a stabilizing solution $X_{\infty} = X_{\infty}^{\top} \geq 0$ to the regulator Riccati equation

$$A^{\top}X_{\infty} + X_{\infty}A + C^{\top}C - (1 - \gamma^{-2})X_{\infty}BB^{\top}X_{\infty} = 0.$$

2. There exists a stabilizing solution $Y_{\infty} = Y_{\infty}^{\top} \ge 0$ to the filter Riccati equation

$$AY_{\infty} + Y_{\infty}A^{\top} + BB^{\top} - (1 - \gamma^{-2})Y_{\infty}C^{\top}CY_{\infty} = 0.$$

3. It holds $\gamma^2 > \lambda_{\max}(Y_{\infty}X_{\infty})$.

Flow Control Problem

\mathcal{H}_{∞} Riccati Equations

Zhou/Doyle/Glover'95

Given some simplifying assumptions, there exists an admissible controller $K(s) \iff$:

1. There exists a stabilizing solution $X_{\infty} = X_{\infty}^{\top} \geq 0$ to the regulator Riccati equation

$$A^{\top}X_{\infty} + X_{\infty}A + C^{\top}C - (1 - \gamma^{-2})X_{\infty}BB^{\top}X_{\infty} = 0.$$

2. There exists a stabilizing solution $Y_{\infty} = Y_{\infty}^{\top} \ge 0$ to the filter Riccati equation

$$AY_{\infty} + Y_{\infty}A^{\top} + BB^{\top} - (1 - \gamma^{-2})Y_{\infty}C^{\top}CY_{\infty} = 0.$$

3. It holds $\gamma^2 > \lambda_{\max}(Y_{\infty}X_{\infty})$.

The central (or minimum entropy) controller $\hat{K}(s) = \hat{C}(sI - \hat{A})^{-1}\hat{B}$ is given by

$$\hat{A} = A - (1 - \gamma^{-2})BB^{\top}X_{\infty} - Z_{\infty}Y_{\infty}C^{\top}C, \quad \hat{B} = Z_{\infty}Y_{\infty}C^{\top}, \quad \hat{C} = -B^{\top}X_{\infty},$$

with
$$Z_{\infty} = (I_n - \gamma^{-2} X_{\infty} Y_{\infty})^{-1}$$
.

\mathcal{H}_{∞} Robust Controller and Riccati Equations

Arising Challenges

Large-Scale Matrix Equations

How to solve the arising large-scale sparse Riccati equations

$$A^{\top}X_{\infty} + X_{\infty}A + C_1^{\top}C_1 + X_{\infty}(\gamma^{-2}B_1B_1^{\top} - B_2B_2^{\top})X_{\infty} = 0?$$

Low-rank Riccati iteration solves indefinite Riccati equations by an approximation

$$X_{\infty} \approx ZZ^{\top}$$
,

with $Z \in \mathbb{R}^{n \times r}$ and $r \ll n$.

[Lanzon/Feng/Anderson '07, Benner/Heiland/W. '22a]

\mathcal{H}_{∞} Robust Controller and Riccati Equations

Arising Challenges

Large-Scale Matrix Equations

How to solve the arising large-scale sparse Riccati equations

$$A^{\top}X_{\infty} + X_{\infty}A + C_1^{\top}C_1 + X_{\infty}(\gamma^{-2}B_1B_1^{\top} - B_2B_2^{\top})X_{\infty} = 0?$$

Low-rank Riccati iteration solves indefinite Riccati equations by an approximation

$$X_{\infty} \approx ZZ^{\top},$$

with $Z \in \mathbb{R}^{n \times r}$ and $r \ll n$.

[Lanzon/Feng/Anderson '07, Benner/Heiland/W. '22a]

High Dimensional Controller

How to construct a low dimensional $\hat{K}(s)$ for faster evaluation?

• Use model order reduction based on X_{∞} and Y_{∞} .

(Still) Stabilizing Reduced-Order Controller

Notation:

- normalized left coprime factorizations $G = M^{-1}N$, $G_r = M_r^{-1}N_r$ (for computation see [Benner/Heiland/W. '19]),
- $\beta = \sqrt{1 \gamma^{-2}}.$

The approximation error of the \mathcal{H}_{∞} balanced truncation is given by

$$\|[\beta(N-N_r) \quad M-M_r]\|_{\mathcal{H}_{\infty}} =: \beta \hat{\epsilon} \leq \beta \epsilon = 2 \sum_{k=r+1}^{n} \frac{\beta \sigma_k^{\mathcal{H}_{\infty}}}{\sqrt{1+\beta^2 \left(\sigma_k^{\mathcal{H}_{\infty}}\right)^2}},$$

where $\sigma_k^{\mathcal{H}_{\infty}}$ are the \mathcal{H}_{∞} characteristic values.

(Still) Stabilizing Reduced-Order Controller

Notation:

- normalized left coprime factorizations $G = M^{-1}N$, $G_r = M_r^{-1}N_r$ (for computation see [Benner/Heiland/W. '19]),
- $\beta = \sqrt{1 \gamma^{-2}}.$

The approximation error of the \mathcal{H}_{∞} balanced truncation is given by

$$\|[\beta(N-N_r) \quad M-M_r]\|_{\mathcal{H}_{\infty}} =: \beta \hat{\epsilon} \leq \beta \epsilon = 2 \sum_{k=r+1}^{n} \frac{\beta \sigma_k^{\mathcal{H}_{\infty}}}{\sqrt{1+\beta^2 \left(\sigma_k^{\mathcal{H}_{\infty}}\right)^2}},$$

where $\sigma_k^{\mathcal{H}_{\infty}}$ are the \mathcal{H}_{∞} characteristic values.

Theorem

[Mustafa/Glover '91]

The reduced-order \mathcal{H}_{∞} controller is guaranteed to stabilize the full-order system if

$$\hat{\epsilon}(\beta + \gamma) < 1$$
 or $\epsilon(\beta + \gamma) < 1$.

Numerical Realization of the DAE Structure

For consistent initial values, i.e., $Jv_0 = 0$, the semi-discretized Navier-Stokes equation can be realized by an ODE system:

$$E\dot{v} = Av + J^{\top}p + Bu,$$

$$0 = Jv,$$

$$y = Cv,$$

$$E\dot{v} = \Pi^{\top}A\Pi v + \Pi^{\top}B,$$

$$y = C\Pi v,$$

where $\Pi = I_{n_v} - E^{-1}J^{\top}(JE^{-1}J^{\top})^{-1}J$ is the discrete Leray projection.

Numerical Realization of the DAE Structure

For consistent initial values, i.e., $Jv_0 = 0$, the semi-discretized Navier-Stokes equation can be realized by an ODE system:

$$E\dot{v} = Av + J^{\top}p + Bu,$$

$$0 = Jv,$$

$$y = Cv,$$

$$E\dot{v} = \Pi^{\top}A\Pi v + \Pi^{\top}B,$$

$$y = C\Pi v,$$

where $\Pi = I_{n_v} - E^{-1}J^{\top}(JE^{-1}J^{\top})^{-1}J$ is the discrete Leray projection.

Implicit Realization

Heinkenschloss&Sorensen&Sun '08]

The explicit projection Π can be avoided in the numerical methods by solving saddle point problems of the type

$$\begin{bmatrix} A + s_i E & J^\top \\ J & 0 \end{bmatrix} \begin{bmatrix} X \\ * \end{bmatrix} = \begin{bmatrix} Y \\ 0 \end{bmatrix}.$$

Linearization Uncertainties

In general, an uncertainty \mathcal{A}_{Δ} in the linearization \mathcal{A} ...

$$\mathcal{E}\dot{x}(t) = \mathcal{A}x(t) + \mathcal{B}u(t),$$

 $y(t) = \mathcal{C}x(t)$

$$\mathcal{E}\dot{x}(t) = [\mathcal{A} + \mathcal{A}_{\Delta}]x(t) + \mathcal{B}u(t),$$

$$y(t) = \mathcal{C}x(t)$$

... is an additive uncertainty in the transfer function

$$G(s) = C(s\mathcal{E} - \mathcal{A})^{-1}\mathcal{B}$$

$$G_{\Delta}(s) = \mathcal{C}(s\mathcal{E} - \mathcal{A} - \mathcal{A}_{\Delta})^{-1}\mathcal{B}$$

= $G(s) + \tilde{G}(s)$

where
$$\tilde{G}(s) = \mathcal{C} \mathcal{A}_{\Delta}(s\mathcal{E} - \mathcal{A})^{-1}(s\mathcal{E} - \mathcal{A} - \mathcal{A}_{\Delta})^{-1}\mathcal{B}$$
.

Linearization Uncertainties

In general, an uncertainty \mathcal{A}_{Δ} in the linearization \mathcal{A} ...

$$\mathcal{E}\dot{x}(t) = \mathcal{A}x(t) + \mathcal{B}u(t),$$

 $y(t) = \mathcal{C}x(t)$

$$\mathcal{E}\dot{x}(t) = [\mathcal{A} + \mathcal{A}_{\Delta}]x(t) + \mathcal{B}u(t),$$

$$y(t) = \mathcal{C}x(t)$$

... is an additive uncertainty in the transfer function

$$G(s) = \mathcal{C}(s\mathcal{E} - \mathcal{A})^{-1}\mathcal{B}$$

$$G_{\Delta}(s) = \mathcal{C}(s\mathcal{E} - \mathcal{A} - \mathcal{A}_{\Delta})^{-1}\mathcal{B}$$

= $G(s) + \tilde{G}(s)$

where
$$\tilde{G}(s) = \mathcal{C}_{\Delta}(s\mathcal{E} - \mathcal{A})^{-1}(s\mathcal{E} - \mathcal{A} - \mathcal{A}_{\Delta})^{-1}\mathcal{B}$$
.

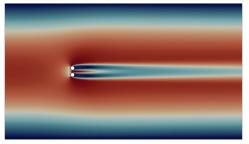
Additive uncertainties can be compensated by robust \mathcal{H}_{∞} controller design.

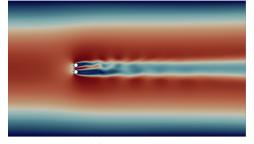
- 1. Introduction to Linear Time Invariant Systems
- 2. Linear Approximations vs. Nonlinear Control
- 3. Introduction to Robust Contro
- 4. Uncertain Linearization Points are Coprime Factor Uncertainties
- 5. Linearized Navier-Stokes Equations as Linear System
- 6. \mathcal{H}_{∞} Robust Controller and Riccati Equations
- 7. Numerical Examples

Double Cylinder

Setup: Stabilization of the steady state

[Benner&JH&Werner'21]



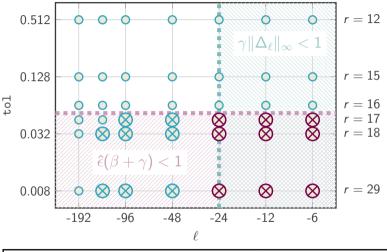


(a) Steady state.

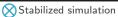
(b) Natural flow.

- Navier-Stokes equations discretized by Taylor-Hood finite elements
- system order n = 51337
- Reynolds number 60
- boundary control: individual rotation of both cylinders
- observations: 3 velocity sensors in the wake behind the cylinders

Double-cylinder: Results [Benner/Heiland/W. '22]



Unstable simulation



⊗ Guaranteed stabilization

References

P. Benner and JH.

LQG-Balanced Truncation low-order controller for stabilization of laminar flows.

In Active Flow and Combustion Control 2014. Springer, Berlin, 2015.

doi:10.1007/978-3-319-11967-0_22.

P. Benner and JH.

Robust stabilization of laminar flows in varying flow regimes.

IFAC-PapersOnLine, 2016.

doi:10.1016/j.ifacol.2016.07.414.

P. Benner and JH.

Convergence of approximations to Riccati-based boundary-feedback stabilization of laminar flows.

IFAC-PapersOnLine, 2017.

doi:10.1016/j.ifacol.2017.08.2476.

P. Benner, JH, and S. Werner.

Robust controller versus numerical model uncertainties for stabilization of Navier-Stokes equations.

IFAC-PapersOnLine, 2019.

doi:10.1016/j.ifacol.2019.08.005.

P. Benner, JH, and S. Werner.

A low-rank solution method for Riccati equations with indefinite quadratic terms.

Numerical Algorithms, 2022.

doi:10.1007/s11075-022-01331-w.

P. Benner, JH, and S. Werner.

Robust output-feedback stabilization for incompressible flows using low-dimensional ∞ -controllers.

Comput. Optim. Appl., 2022.

doi:10.1007/s10589-022-00359-x.

References

JH.

Convergence of coprime factor perturbations for robust stabilization of Oseen systems.

Math. Control Relat. Fields. 2022.

doi:10 3934/mcrf 2021043

T. Breiten and K. Kunisch.

Riccati-based feedback control of the monodomain equations with the Fitzhugh-Nagumo model.

SIAM J. Cont. Optim., 2014.

doi:10.1137/140964552

R. F. Curtain.

Model reduction for control design for distributed parameter systems.

In Research Directions in Distributed Parameter Systems, SIAM, 2003.

doi:10.1137/1.9780898717525.ch4.

M. Heinkenschloss, D. C. Sorensen, and K. Sun.

Balanced truncation model reduction for a class of descriptor systems with application to the Oseen equations.

SIAM J. Sci. Comput., 2008.

doi:10.1137/070681910.

A. Lanzon, Y. Feng, and B. D. O. Anderson.

An iterative algorithm to solve algebraic Riccati equations with an indefinite quadratic term.

In 2007 European Control Conference (ECC), 2007.

doi:10.23919/ecc.2007.7068239.

CSC

References

D. Mustafa and K. Glover.

Controller reduction by \mathcal{H}_{∞} -balanced truncation.

IEEE Trans. Autom. Control, 1991.

J.-P. Raymond.

Feedback boundary stabilization of the two-dimensional Navier–Stokes equations.

SIAM J. Cont. Optim., 2006.

doi:10.1137/050628726.

G. Weiss.

Representation of shift-invariant operators on L^2 by H^∞ transfer functions: An elementary proof, a generalization to L^p , and a counterexample for L^∞ . Math. Control Signals Syst., 1991.

doi:10.1007/BF02551266.

J.-M. Coron.

Stabilization of non linear control systems.

BCAM OPTPDE Summer School, 2011.

URL: http:

//www.bcamath.org/documentos_public/courses/ TalkBCAM20110706stabilisation-Coron.pdf.

R. F. Curtain and H. Zwart.

An Introduction to Infinite-Dimensional Linear Systems Theory.

Springer, 1995.

doi:10.1007/978-1-4612-4224-6.

K. Zhou, J. C. Doyle, and K. Glover.

Robust and Optimal Control.

Prentice-Hall, 1996.

A. Gaul.

Leckerbraten – a lightweight python toolbox to solve the heat equation on arbitrary domains.

GitHub, 2013.

URL:

https://github.com/andrenarchy/leckerbraten.